Lab &: Visual Odometry of
AR Drone using
Structure from Motion

EES565: Mobile Robotics

Structure
from Motion

StM Algorithm

Use cagse:

* A camera is taking images of a static object from different views

* Given 2D Image points correspondence reconstruct the 3D Point
Cloud

* As the object rotates so a different part of it is seen to the Camera,
and thus, different points & correspondences are detected.

StM Algorithm

Implementation: Start with 2 images of the same scene

 Compute Camera relative Pose
* Take the two images and calculate LK optical flow on feature points

* Run 8-point algorithm / RANSAC to find Fundamental Matrix and
consequently find Essential Matrix

* Find R and T matrices by decomposing Essential Matrix (SVD)
» Triangulate to result the 3D Points (store 3D points in a PointCloud)

* Use the 3D points and corresponding 2D points in both images in the
solvePnP function to estimate camera motion odometry.

e Repeat above with 3 images to get better scene reconstruction

* ¥

* Structure from motion from 2 cameras, using farneback optical flow as the 'features'

* No, this doesn't work on more than 2 cams, because that requires bundle adjustment, which
* I'm still searching if there's an OpenCV implementation of it
*/
Mat sfm(Mat& imgl, Mat& img2, Mat& cam_matrix, Mat& dist_coeff) {
Mat grayl, gray2;
cvtColor(imgl, grayl, CV_BGR2GRAY);
cvtColor(img2, gray2, CV_BGR2GRAY);

/* Find the optical flow using farneback dense algorithm
Note that you might need to tune the parameters, especially window size.
Smaller window size param, means more ambiguity when calculating the flow.
*/ —
Mat flow_mat;
calcOpticalFlowFarneback(grayl, gray2, flow mat, ©.5, 3, 12, 3, 5, 1.2, 0);

vector left_points, right_points;
for (int y = 0; y < imgl.rows; y+=6) {
for (int x = @; x < imgl.cols; x+=6) {
/* Flow is basically the delta between left and right points */
Point2f flow = flow_mat.at(y, x);

/* There's no need to calculate for every single point,
if there's not much change, just ignore it
*/
if(fabs(flow.x) < 0.1 & fabs(flow.y) < 0.1)
continue;

left_points.push_back(Point2f(x, y));
right_points.push_back(Point2f(x + flow.x, y + flow.y));

/* Undistort the points based on intrinsic params and dist coeff */
undistortPoints(left_points, left points, cam_matrix, dist_coeff);
undistortPoints(right_points, right points, cam_matrix, dist_coeff);

Sample Code

Take two images

Optical Flow and
2D point correspondences

/* Try to find essential matrix from the points */
Mat fundamental = findFundamentalMat(left points, right points, FM RANSAC, 3.0, 0.99);
Mat essential cam_matrix.t() * fundamental * cam_matrix;

/* Find the projection matrix between those two images */
SVD svd(essential);

static const Mat W = (Mat_(3, 3) <«

0: '11 0:
1: 0:)
0, 0, 1);

static const Mat W_inv

W.inv();

Mat_ R1 = svd.u * W * svd.vt;

Mat_ T1 = svd.u.col(2);

Mat_ R2 = svd.u * W_inv * svd.vt;

Mat_ T2 = -svd.u.col(2); L

static const Mat Pl = Mat::eye(3, 4, CV_64FCl);
Mat P2 =(Mat_(3, 4) <<
R1(e, ©), R1(e, 1), R1i(e, 2), Ti1(0),
R1(1, @), R1(1, 1), R1(1, 2), T1(1),
R1(2, @), R1(2, 1), R1(2, 2), T1(2)); -

/* Triangulate the points to find the 3D homogenous points in the world space
Note that each column of the 'out' matrix corresponds to the 3d homogenous point
*/ .
Mat out;
triangulatePoints(P1, P2, left_points, right_points, out);

/* Since it's homogenous (x, y, z, w) coord, divide by w to get (x, y, z, 1) */ L

vector splitted = {
out.row(@) / out.row(3),
out.row(1l) / out.row(3),
out.row(2) / out.row(3)

B

After triangulation, use 3D-
2D point correspondences to
return out; find camera motion

merge(splitted, out);

Find Essential Matrix

Camera relative Pose

3D points

References

* Jebara, Tony, Ali Azarbayejani, and Alex Pentland. "3D structure from
2D motion." Signal Processing Magazine, IEEE 16.3 (1999): 66-84.

